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Abstract

A detailed spectral analysis is presented for dynamic eigenfields generated by time harmonic edge perturbations
applied to a semi-infinite prestrained plate. Formulation is exact within continuum elasticity theory and frequency maps
are provided over a range of prestrain, material (hyperelastic) properties, boundary conditions and frequency of applied
disturbance.

We concentrate mainly on numerical findings for the complex wave numbers associated with evanescent waves.
Asymptotic expansions, at the limit of low frequency and near cut-off frequencies are given. An appreciable depth
of penetration of evanescent waves is found to characterize frequencies just below any cut-off frequency. Cut-off fre-
quencies, independent of boundary conditions, are highly sensitive to material properties and their explicit dependence
on prestrain level has been exposed. Asymptotic solutions of the frequency equations, for the propagating modes in the
long wavelength region, are added to enhance and to support the numerical results. The influence of symmetric bound-
ary conditions over the long faces (free, clamped, sliding and inextensional) on the wave behaviour is highlighted.
Application of the results to non-symmetric boundary conditions is suggested.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Existing studies on steady state wave behaviour of prestrained plates concentrate almost exclusively
on propagating modes with just a limited number of studies devoted to the evanescent waves.
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Propagating modes are relevant to wave-propagation, vibration and quasi-static stability examina-
tions and are discussed extensively for prestrained waveguides (e.g. Ogden and Roxburgh, 1993 for
hyperelastic waveguide; Rogerson and Cai, 2000 for fiber-reinforced layer). The evanescent modes, on
the other hand, are energy trapping and related to the construction of a possible dynamic version of
Saint-Venant�s principle (Torvik, 1967; Karp and Durban, 1997). These waves also have a contribution
to dynamical stress concentration (McCoy, 1968). The quasi-static counterpart of evanescent waves, elas-
tic eigenfunctions, are extensively explored in the context of end effects (Horgan and Knowles, 1983)
and commonly accepted as providing an estimate for the validity of Saint-Venant�s principle in
elastostatics.

Here, we present a detailed study of both propagating and evanescent modes that develop in a pre-
strained plate (Karp, 1996) with emphasis on the latter. The setting is similar to that of the quasistatic anal-
ysis in (Karp and Durban, 2002). A hyperelastic semi-infinite plate is uniformly stretched, under plane
strain conditions, in the axial direction. A time harmonic incremental perturbation is then applied at the
end. We analyze the spectrum of the eigenmodes, both propagating and evanescent, that will potentially
contribute to the actual response of the plate.

The mathematical formulation is within the framework of continuum elasticity, accounting for large
deformations, with various boundary conditions imposed over the long faces of the plate. A separation
of variables solution is assumed with due distinction between symmetric and antisymmetric eigenmodes.
Our main interest is in the sensitivity of the modes to the level of prestrain, boundary conditions over
the long faces, constitutive parameters and the frequency of applied disturbance.

Compliance with boundary data generates transcendental equations for the wavenumbers at a given fre-
quency, initial stretch, material properties and boundary conditions. Four sets of boundary conditions have
been examined which include free, clamped, sliding and inextentional boundaries. Material behaviour is
modeled by hyperelastic strain energy functions for three different materials (with experimentally deter-
mined coefficients), over a wide range of initial stretch.

Frequency maps are displayed in some detail to assess the various sensitivities of the wavenumber for
evanescent waves to prestrain, boundary conditions, material properties and frequency. It has been found
that the eigensolutions for symmetric boundary conditions can be used, with appropriate adjustments, to
represent wave behaviour in waveguides with non-symmetric boundary conditions.

We have studied the influence of initial stretch k and exciting frequency X, for three material models and
four sets of ideal boundary conditions, with the main results supported by asymptotic expansions. The
imaginary part of the smallest complex eigenvalue, inversely related to depth of penetration, is examined
in particular and illustrated over a range of parameters. High sensitivity of that eigenvalue is exposed, espe-
cially, near cut-off frequencies. Due to this importance of cut-off frequencies, their explicit dependence on
the prestretch is derived.

It was found that plates with free faces and plates with clamped faces share similar frequency maps, both
qualitatively and quantitatively (except for the fundamental modes). Plates with sliding and inextensional
faces share the same frequency maps (again with the exception of fundamental modes).

Asymptotical expansions near several limiting points (cut-off frequencies, quasi-static response, long
wave length limit and bifurcation points) are given and used to assess the numerical results.
2. Time harmonic response of a prestrained plate

A uniformly strained semi-infinite plate (Fig. 1) is characterized by the principal stretches kx, ky � 1 and
kz � k. Plane-strain conditions are assumed under uniform axial tension stress rz = r. The origin of the
Cartesian system (x,y,z) is located at the center of the free z = 0, along with the associated unit triad
(i, j,k), where the deformed thickness is denoted by 2h.



Fig. 1. A semi-infinite (z P 0) plate under uniform stress r. Plane strain conditions are imposed in the y-direction and current
thickness is 2h. Also shown are the plane-strain curves of force-stretch for the three hyperelastic materials considered in the paper
(A.5)–(A.7).
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Assume now a time harmonic incremental end disturbance, applied over the end of the plate, which in-
duces the perturbed velocity
V ¼ ui þ wk ð2:1Þ
within the plate. Restricting the discussion to plane-strain response, we find that both velocity components
(u,w) depend only on x and z. The Eulerian strain rate components are therefore
ex ¼ u;x; cxz ¼ 1=2ðu;z þ w;xÞ; ez ¼ w;z: ð2:2Þ

Incremental plane-strain response is described in the form, suggested by Hill (1979),
r
r
x ¼ aex þ cez; s

r
xz ¼ 2lcxy ; r

r
z ¼ ðc� rÞex þ bez ð2:3Þ
where
�
r
r
x; s

r
xz; r

r
z

�
are the objective Jaumann stress rates and (a,b,c, 2l) denote instantaneous material

moduli. Relations (2.3) cover a wide family of solids including hyperelastic materials (Appendix A) for
which these moduli depend on the prestrain k.

The rate form of the two equations of motion (Karp, 1996) for the uniformly strained plate is given by
au;xx þ bu;zz þ ðcþ aÞw;xz ¼ qu;tt ð2:4Þ

ðcþ aÞu;xz þ aw;xx þ bw;zz ¼ qw;tt ð2:5Þ

with
a ¼ l � 1

2
r; b ¼ l þ 1

2
r ð2:6Þ
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where q is the mass density at the homogeneous prestrained state, and t denote the time. In the absence of
the inertia terms we recover from (2.4) and (2.5) the quasistatic rate equilibrium equations of Hill (1979).

Reference phase velocities of transverse waves (CT) and longitudinal waves (CL) follow from (2.4) and
(2.5) as
C2
Tx ¼

a
q
; C2

Tz ¼
b
q
; C2

Lx ¼
a
q
; C2

Lz ¼
b
q

ð2:7Þ
where the indices (x,z) denote the direction of wave propagation.
Along the faces x = ±h we impose boundary conditions which require various combinations of vanish-

ing velocity components in (2.1) and traction rate vector components given by (Karp and Durban, 2002)
�tx ¼ r
r
xiþ s

r
xz � rcxy

� �
k at x ¼ �h ð2:8Þ
Using the kinematic relations (2.2) and the constitutive equations (2.3) it is possible to express the
boundary data in terms of velocity components for four ideal and symmetric cases:

For free boundaries (FR) where tx vanishes we have
au;x þ cw;z ¼ 0; u;z þ w;x ¼ 0 at x ¼ �h ð2:9Þ
For clamped boundaries (CL) where V vanishes we find
u ¼ 0; w ¼ 0 at x ¼ �h ð2:10Þ

For sliding (frictionless) boundaries (SL), both shear traction rate and normal velocity have to vanish
u ¼ 0; u;z þ w;x ¼ 0 at x ¼ �h ð2:11Þ

Finally, for inextensional boundaries (IN), there is no sliding and no normal traction rate
au;x þ cw;z ¼ 0; w ¼ 0 at x ¼ �h ð2:12Þ

Notice that these boundary conditions are imposed simultaneously with the application of the end
disturbance.

Time harmonic eigenfields of Eqs. (2.4) and (2.5), compatible with any of the boundary conditions (2.9)–
(2.12), are now sought in the usual separation-of-variables solution space
u ¼ UðxÞ exp
ipkz
2h

� ixt
� �

; w ¼ W ðxÞ exp
ipkz
2h

� ixt
� �

ð2:13Þ
where U(x) and W(x) are transverse velocity profiles, k is the associated non-dimensional wave number and
x is the circular frequency. Substituting (2.13) in the differential equations (2.4) and (2.5) and noting the
symmetry of all boundary data, we can separate the solution into symmetric patterns
Us ¼ A1 sinh C1

pkx
2h

� �
þ A2 sinh C2

pkx
2h

� �
ð2:14aÞ

W s ¼ A1g1 cosh C1

pkx
2h

� �
þ A2g2 cosh C2

pkx
2h

� �
ð2:14bÞ
and antisymmetric patterns
Ua ¼ A3 cosh C1

pkx
2h

� �
þ A4 cosh C2

pkx
2h

� �
ð2:15aÞ
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W a ¼ A3g1 sinh C1

pkx
2h

� �
þ A4g2 sinh C2

pkx
2h

� �
ð2:15bÞ
Here A1–A4 are integration constants,
gp ¼
i aC2

p � �b
� �
Cpðcþ aÞ p ¼ 1; 2 ð2:16Þ
and (C1,C2) are the roots of the characteristic equation of (2.4) and (2.5)
aaC4 � �dC2 þ �b�b ¼ 0 ð2:17Þ

where
�b � b� bC2; �b � bð1 � C2Þ ð2:18Þ

with C denoting the non-dimensional phase velocity
C � X
k

with X � 2hx
pCTz

ð2:19Þ
The roots (C1,C2) of (2.17) are given explicitly by
C1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d

2 � 4a�ba�b
q

2aa

vuut
; C2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d

2 � 4a�ba�b
q

2aa

vuut
ð2:20Þ
where
�d � a�bþ a�b � ðcþ aÞ2 ¼ d � bðaþ aÞC2 ð2:21Þ

and
d � abþ ab � ðcþ aÞ2 ð2:22Þ

Imposing the boundary conditions (2.9)–(2.12) on the velocity profiles (2.13) generates in each case tran-

scendental equations for the wave number k at a given frequency x. A detailed mapping of the wave numbers
for three different material models is given in the next section. Values of the wave number appear in pairs of
opposite sign (±k) or as complex conjugates and depend on frequency X, boundary data, initial stretch k and
material properties. For propagating waves, k is purely real and will be labeled as ‘‘wave constant’’. For
purely imaginary values of the wave number we shall consider only the evanescent fields, where ik < 0, labe-
ling the positive value of Im{k} as ‘‘attenuation constant’’. That term will be also used for labeling the pos-
itive imaginary part of complex wave numbers. Thus, with the notation k = J + iK, where both J, K are real,
we consider eigenvalues where K P 0. Propagating waves are identified with K = 0 with J then denoting the
wave constant. For imaginary or complex values of the wave number k, the smallest (positive) value of the
attenuation constant K provides an upper bound on the depth of penetration of evanescent waves.

The boundary conditions (2.9)–(2.12) are conveniently restated in terms of the velocity profiles as
follows:

Free boundaries (FR):
aU 0 þ ipk
2h

� �
cW ¼ 0;

ipk
2h

� �
U þ W 0 ¼ 0 at x ¼ �h ð2:23Þ
Clamped boundaries (CL):
U ¼ 0; W ¼ 0 at x ¼ �h ð2:24Þ
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Sliding boundaries (SL):
U ¼ 0;
ipk
2h

� �
U þ W 0 ¼ 0 at x ¼ �h ð2:25Þ
Inextensional boundaries (IN):
W ¼ 0; aU 0 þ ipk
2h

� �
cW ¼ 0 at x ¼ �h ð2:26Þ
The prime ( 0) denote here differentiation with respect to the x coordinate.
Based on the symmetry of the problem it can be observed that the middle plane (x = 0) behaves as a

sliding boundary (SL) for symmetric modes (2.14), and as an inextensional boundary (IN) for antisymmet-
ric modes (2.15). Hence, with due account for the appropriate width (h/2) in each half field, we obtain also
solutions for the mixed boundary conditions FR/SL, FR/IN, CL/SL, CL/IN, SL/IN.

The transverse velocity profiles (2.14)–(2.15) should comply with the boundary data (2.23)–(2.26), lead-
ing in each case to the vanishing of a 2 · 2 determinant at admissible solutions for k.
3. Compliance with boundary data and frequency maps

We now turn to a detailed investigation of the frequency spectra characterizing the prestrained plate, at
various combinations of ideal boundary data over the long faces. The analysis concentrates on the full
space of solutions for both propagating and evanescent waves, while axially growing modes are excluded
from the discussion in view of Sommerfeld�s radiation principle.

Three different compressible, hyperelastic, solids are addressed as a representative sample of material re-
sponse. Their instantaneous moduli (2.3) are derived and discussed in Appendix A. We have chosen to pre-
sent here numerical results for the standard Blatz–Ko model (BK) and for two vulcanized foam rubbers: A
highly compressible natural rubber (S1) and a nearly incompressible synthetic rubber (S2).

Frequencies that admit the solution k = 0 are known as the cut-off frequencies, common to any bound-
ary data, and have a special role in assessing the axial depth of penetration of evanescent waves. They are
detailed in Appendix B for the hyperelastic materials considered here, with emphasis on the influence of
prestrain on the two families of cut-off frequencies.
3.1. Free boundaries

Admissible wave numbers k at each given frequency X are determined from (2.23) by the transcendental
equation
tanh C1

pk
2

� �
� Q1

Q2

� ��1

tanh C2

pk
2

� �
¼ 0 ð3:1Þ
where the (+) and (�) signs correspond to symmetric and antisymmetric modes, respectively, and
Qp ¼
aCp þ icgp
gpCp þ i

; p ¼ 1; 2: ð3:2Þ
Eq. (3.1) is the quasi-linear analogue of the Rayleigh–Lamb equation derived under the assumptions of
linear elasticity and solved completely by Mindlin (1960). An equivalent equation to (3.1) has been derived
independently by Ogden and Roxburgh (1993) for incompressible materials and by Roxburgh and Ogden
(1994) for compressible materials.
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Eq. (3.1) has been solved numerically to trace permissible values of k for given frequency X, material
moduli and initial stretch k. The standard Muller method (e.g., Press et al., 2001) is employed to yield a
finite set of smallest complex eigenvalues in the prestrain range of 1 < k < 2.3 and frequency range
0 < X < 8. Among the complex and the imaginary eigenvalues detected by the numerical routine, the only
eigenvalues retained here are the first few in ascending order of the imaginary part.

Accuracy of the numerical scheme has been checked and confirmed by (a) recovering the quasistatic re-
sults of Karp and Durban (2002) obtained with X = 0 at different levels of prestretch, (b) recalculating the
real and the complex wave numbers k at the stress free state (k = 1) with m = 0.31 and 0.25 and comparing
that data with the original results of Mindlin (1960) and Achenbach (1973), (c) checking the cut-off frequen-
cies (B.3) at the limit k = 0, and (d) verifying the agreement with the asymptotic expansions obtained at the
long wavelength limit.
Fig. 2. Frequency maps for the highly compressible rubber S1 at the stress free configuration (k = 1) with free boundaries. Thin lines
(composed of black dots) indicate real and purely imaginary branches. Thick lines (composed of hollow circles) indicate complex
branches (two curves for each eigenvalue). (a) Symmetric modes, (b) antisymmetric modes.
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Figs. 2 and 3 display the frequency spectrum for the highly compressible rubber (S1) given in (A.6), at
the stress free state (k = 1) and with initial stretch of k = 1.4, respectively. The equivalent results for the
nearly incompressible rubber (S2) defined by (A.7) are shown in Figs. 4 and 5. Typical frequency maps
for the BK material (A.5) are displayed in Fig. 6 and can be compared with Figs. 3 and 5, and with the
linear elastic results for m = 0.25 given by Achenbach (1973). The stretch k = 1.4 has been chosen here as
representative to illustrate the effect of prestress on the frequency maps. Due to the complex-value nature
of the eigenvalues, each branch on the figures is actually composed of dots with intervals dictated by the
increments of X in the numerical routine.
Fig. 3. Frequency maps for the S1 solid at initial stretch of k = 1.4 with free boundaries. Nomenclature as in Fig. 2. (a) Symmetric
modes, (b) antisymmetric modes.



Fig. 4. Frequency maps for the nearly incompressible rubber S2 at the stress free configuration (k = 1.0), with free boundaries.
Nomenclature as in Fig. 2. (a) Symmetric modes, (b) antisymmetric modes.
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The general pattern of frequency spectrum obtained previously in linear elasticity (Mindlin, 1960), con-
sisting of propagating (real k) and evanescent (complex or purely imaginary k) waves, is preserved here
regardless of prestrain level. Namely, only one propagating mode is possible at low frequencies for each
symmetric and antisymmetric field, accompanied by an infinite number of possible evanescent waves. These
propagating modes are the fundamental modes, which at low frequency correspond to solutions obtained
under the assumptions of beam theory. As the frequency increases, one propagating mode is added at each
surpass of a cut-off frequency. Other common features observed in a linear elastic analysis, such as existence



Fig. 5. Frequency maps for the nearly incompressible rubber S2 at initial stretch of k = 1.4, with free boundaries. Nomenclature as in
Fig. 2. (a) Symmetric modes, (b) antisymmetric modes.
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of negative group velocity, merging of the complex branches with either purely real or purely imaginary
branches at their minima or maxima points, can be observed in the figures given here, and will not be dis-
cussed in the present communication.

At sufficiently low values of X the wave numbers approach the quasistatic eigenvalues ks � k(X = 0) dis-
cussed by Karp and Durban (2002). It can be verified from 3.1 that when X2 
 1 the roots admit the expan-
sion (except near the origin X = 0, k = 0)



Fig. 6. Frequency maps for the foam rubber BK at initial stretch of k = 1.4, with free boundaries. Nomenclature as in Fig. 2. (a)
Symmetric modes, (b) antisymmetric modes.
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k � ks þ k1X
2 ð3:3Þ
implying that ok/oX vanishes at X = 0 as in the case of linear elasticity (Achenbach, 1973). Both ks and the
coefficient k1 in (3.3) depend of course on initial stretch and material moduli.

Similarly, near the cut-off frequencies (B.3), where jk2j 
 1, the roots of (3.1) behave essentially like
X1k
2 � X � Xc ð3:4Þ
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where Xc denotes any of the cut-off frequencies (B.3) and coefficient X1 depends on initial stretch and mate-
rial moduli. Notice that while both Xc and X1 in (3.4) are real and positive, k can become purely imaginary.
That implies that for X > Xc the wave number is real and associated with a propagating wave, while for
X < Xc the wave number is purely imaginary representing an evanescent wave as can be observed in Figs.
2–6 (and in subsequent figures as well).

It is instructive to recall at this point the general nature of propagating modes emerging at the cut-off
frequency. The non-dimensional phase velocity of the wave is defined as C = X/k. From (3.4), which is valid
for small k, we find that the phase velocity tends to infinity at a frequency infinitesimally above the cut-off
frequency. The same result for incompressible materials is reported by Rogerson (1997). The non-dimen-
sional group velocity, on the other hand, defined by Vg = oX/ok, vanishes at the same cut-off frequency
in agreement with the observation made by Pichugin and Rogerson (2001) for incompressible materials.
That property has been explained by Achenbach (1973) as a feature reflecting the mathematical structure
of (3.1) and providing a defining relation between X2 and k2.

For the fundamental modes, when X2 
 1 and jk2j 
 1, we can use the standard expansion of
tanh c � c�1/3c3 (for c2 
 1) and replace the transcendental equations (3.1) by much simpler versions valid
near the origin. Thus, for symmetric mode we have the elegant expression
k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab

ab� c2

r
X ð3:5Þ
predicting the linear non-dispersive (C = Vg) relation observed in Figs. 2a, 3a, 4a, 5a and 6a. That result
degenerates to the linear elastic case upon substitution of the stress free state relations (A.8), resulting in
(Achenbach, 1973)
k �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m0

2

r
X ð3:6Þ
Of particular interest is the specification of relation (3.5) for prestrain near necking instability, where
ab � c2 = 0 as discussed in Durban and Karp (1992) in the context of quasi-static response. For example,
with the BK material (A.9) relation (3.5) takes the form
k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

9R� 1

r
X with R � k�8=3 ð3:7Þ
Now, the ultimate tensile load is obtained when R = 1/9 which corresponds to the ultimate stretch
ku � 2.28 (notice maximum in load curve at that stretch in Fig. 1). It follows that for stretch k slightly below
ku the wave constant (3.7) is, at low frequencies,
k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9ku

8ðku � kÞ

s
X ð3:8Þ
indicating that both phase and group velocities of that propagating fundamental mode are approaching
zero near necking.

Applying a similar expansion for the antisymmetric fundamental mode near the origin where X2 
 1 and
jk2j 
 1, we find from (3.1) that at any finite prestretch k
k �

ffiffiffiffiffiffiffiffiffiffiffi
b

b � a

s
X ¼

ffiffiffiffiffiffiffiffiffiffiffi
l
r
þ 1

2

r
X; k > 1 ð3:9Þ
while at the stress free configuration the leading term is given by
k2 � �
ffiffiffi
6

p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m0

p
X; k ¼ 1 ð3:10Þ
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in complete agreement with Achenbach (1973). A relation, equivalent to (3.9) for an incompressible mate-
rial, is deduced by Rogerson (1997).

Comparison of relations (3.9) and (3.10) suggest an interesting influence of prestretch on the nature of
the fundamental flexural mode. While in the absence of prestretch relation (3.10) indicates dispersive behav-
iour of that mode, relation (3.9) points to the absence of dispersion upon application of prestress of any
magnitude. A similar observation has been made by Johnson and Chen (1989) for an aluminum plate,
though no explicit relation is given and by Kaplunov et al. (2000) for an incompressible rubber-like solid.
The dispersive relation (3.10) can be observed in Figs. 2b and 4b upon noting the parabolic shape of the
fundamental mode near the origin. In Figs. 3b, 5b and 6b the same mode shows linear dependence of X
on k, in agreement with relation (3.9).

With the BK definitions (A.9) relation (3.9) takes a the simple form
k �
ffiffiffiffiffiffiffiffiffiffiffiffi

1

1 � R

r
X with R � k�8=3 ð3:11Þ
implying a highly oscillatory behaviour near the stress free state. In fact, the first order expansion of (3.9) in
powers of (k � 1) gives, for the entire family (A.2),
k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � m0

2ðk � 1Þ

s
X; k > 1 ð3:12Þ
Expressions (3.5) and (3.12) reflect the sensitivity of dynamic response near points of instability: necking in
tension and buckling of a semi-infinite plate in compression.

The asymptotic derivations detailed here are limited to the long wave length region and brought here in
support and generalization of the numerical results. Further asymptotic results for the propagating modes
in the short wave length limit have been given by Rogerson (1997), Kaplunov et al. (2002) and in other
works related to surface waves (e.g., Chadwick and Jarvis, 1979).

3.2. Clamped boundaries

The case where no velocity component is allowed to develop along the boundaries (2.24) represents the
stiffest possible constraint. The equations for wave numbers k are here obtained in the form
tanh C1

pk
2

� �
� g1

g2

� ��1

tanh C2

pk
2

� �
¼ 0 ð3:13Þ
where the (+) and (�) signs correspond to symmetric and antisymmetric modes, respectively, and (g1,g2)
are given in (2.16).

Numerical solutions of (3.13) have been checked against the quasistatic results in (Karp and Durban,
2002). Sample frequency maps are displayed in Figs. 7 and 8 for the BK material, Figs. 9 and 10 for the
S1 material, and Figs. 11 and 12 for the S2 material, respectively. Unlike the case of free boundaries, in
the range of low frequencies no propagating mode can develop (see Kaplunov, 1995, for same condition
in the linear elastic case). The two fundamental modes are eliminated here by the constraint imposed by
the clamped boundaries.

It is clearly seen that the pattern of frequency maps for the symmetric modes of a clamped plate (Figs.
8a, 9a and 10a) resembles that of antisymmetric modes for a plate with free boundaries (Figs. 6b, 2b and
3b) for the highly compressible solids BK and S1. The same similarity of patterns exists between Figs. 8b,
9b, 10b and 6a, 2a, 3a (except for the fundamental modes in both cases). For the nearly incompressible so-
lid, S2, the similarity is less pronounced due to material resistance to develop dilatational waves. Compar-
ison of Figs. 11b and 12b for a plate with fixed faces and with Figs. 4a and 5a for a plate with free faces,



Fig. 7. Frequency maps for the BK solid at the stress free configuration k = 1.0, with clamped boundaries. Nomenclature as in Fig. 2.
(a) Symmetric modes, (b) antisymmetric modes.
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reveals that the evanescent waves are almost identical for the S2 solid, while the propagating modes have an
asymptotic limit in the long wave region (small k). The asymptote here is the longitudinal wave in an infinite
medium (3.22), shown as a straight line in Fig. 15b, and can be related to the ‘‘unexpected’’ pattern noted
by Kaplunov and Nolde (2002).

Due to the aforementioned similarity, we do not explore further the case of clamped boundaries in detail.
It is worth noting, however, that expressions similar to (3.3) and (3.4) hold here as well, and that at any
given frequency there is only a limited number of propagating waves with an infinite number of evanescent
waves. Asymptotic derivations for propagating modes in an incompressible material can be found in Nolde
and Rogerson (2002), and in Kaplunov and Nolde (2002) for a nearly incompressible plate.

One interesting aspect of frequency maps exclusively characteristic of plates with clamped faces is worth
to mention. A careful observation of the symmetric frequency maps for the nearly incompressible rubber S2



Fig. 8. Frequency maps for the BK solid at initial stretch of k = 1.4, with clamped boundaries. Nomenclature as in Fig. 2.
(a) Symmetric modes, (b) antisymmetric modes.
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(Figs. 11a and 12a) reveal that the real branches originate at cut-off frequencies with an ‘‘S’’ shape. It can be
shown that the middle part of the ‘‘S’’ shape of all branches lays on a line defined by (3.22) shown in Figs.
13b and 15b for the S2 material. The upper bend-down of the ‘‘S’’ shape admits an asymptotic expansion at
the limit of nearly incompressible materials along the lines given by Kaplunov and Nolde (2002) for a lin-
early elastic material.

Observing the volume ratio (A.13) we may argue that for nearly incompressible solids n ! 1. Now, for
large values of n we have from Eqs. (A.3) that the moduli a, b, c, approach the same asymptotic limit of
n
P

jcjmjk
�mj which is much larger than a and b of (2.6). Searching now for asymptotes where X2 � k2

we approximate (2.20) by the leading terms



Fig. 9. Frequency maps for the S1 solid at the stress free configuration k = 1.0, with clamped boundaries. Nomenclature as in Fig. 2.
(a) Symmetric modes, (b) antisymmetric modes.
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C2
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aða� aÞ ð3:14Þ
A further substitution of these expressions in the symmetric eigenvalues equation (3.13) gives the leading
order terms
bða� aÞ þ ðcþ aÞ2

aða� aÞ

ffiffiffi
b
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r
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� �
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Fig. 10. Frequency maps for the S1 solid at initial stretch of k = 1.4, with clamped boundaries. Nomenclature as in Fig. 2.
(a) Symmetric modes, (b) antisymmetric modes.
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At the stress free configuration we recover the equation (Kaplunov and Nolde, 2002)
p
2

X � tan
p
2

X
� �

¼ 1

2ðnþ 1Þ
p
2

X3

k3
with n ¼ m0

1 � 2m0

ð3:16Þ
Thus, as n ! 1 the asymptotical values of X are determined by p
2
X � tanðp

2
XÞ ¼ 0.

For finite strains, with n ! 1 we find the limiting frequencies from the equation (since b/a ! k4)
p
2

k4X ¼ tan
p
2

k4X
� �

ð3:17Þ



Fig. 11. Frequency maps for the S2 solid at the stress free configuration k = 1.0, with clamped boundaries. Nomenclature as in Fig. 2.
(a) Symmetric modes, (b) antisymmetric modes.
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Numerical solution of (3.17) and its linear counterpart is straightforward and agrees with the numerical
results obtained here. Solution of (3.17) for high frequencies X, a region where the initial assumption of
X2 � k2 is more valid, gives limiting frequencies that approach the cut-off frequency values. The effect
of compressibility on the ‘‘S’’ shape obtained by Kaplunov and Nolde (2002), can be observed in Figs. 7
and 9 representing the linear elastic limit of the highly compressible materials considered here.

3.3. Sliding boundaries

The boundary conditions (2.25) generate here the transcendental equations
sinh C1

pk
2

� �
¼ 0 and sinh C2

pk
2

� �
¼ 0 ð3:18Þ



Fig. 12. Frequency maps for the S2 solid at initial stretch of k = 1.4, with clamped boundaries. Nomenclature as in Fig. 2.
(a) Symmetric modes, (b) antisymmetric modes.
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for symmetric modes, and
cosh C1

pk
2

� �
¼ 0 and cosh C2

pk
2

� �
¼ 0 ð3:19Þ
for antisymmetric modes. Eqs. (3.18) and (3.19) admit the solutions Cjk = iN (j = 1,2), where N = 0,2,4, . . .
for symmetric modes (3.18) and N = 1,3,5, . . . for antisymmetric modes (3.19). A further use of relations



Fig. 13. Frequency maps at the stress free configuration k = 1.0, with sliding boundaries. Thin lines indicate symmetric modes and
thick lines indicate antisymmetric modes. (a) BK material. (b) S2 material.
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(2.20) shows that the solutions of all four equations (3.18) and (3.19) follow from the common algebraic
equation:
ðbbÞk4 þ ½dN 2 � bðbþ bÞX2�k2 þ ½aaN 4 � bðaþ aÞN 2X2 þ b2X4� ¼ 0 ð3:20Þ

where even integers N = 0,2,4, . . . correspond to symmetric fields and odd integers N = 1,3,5, . . . corre-
spond to antisymmetric fields. The solution of (3.20) is immediate and fairly simple. In the absence of pre-
stretch we recover the known linear elastic results (Achenbach, 1973)



Fig. 14. Frequency maps for the BK solid at initial stretch of k = 1.4 with sliding boundaries. Nomenclature as in Fig. 2. (a) Symmetric
modes, (b) antisymmetric modes.
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k2 ¼ 1 � 2m0

2ð1 � m0Þ
X2 � N 2; N ¼ 0; 1; 2; 3; 4; . . . ð3:21aÞ

k2 ¼ X2 � N 2; N ¼ 1; 2; 3; 4; . . . ð3:21bÞ
All roots are here either purely imaginary or purely real, as illustrated in Fig. 13 for the BK and S2 mate-
rials in the stress free state. Complex roots appear with finite stretch for the BK material (Fig. 14), but not
for the S1 and S2 materials (Fig. 15).



Fig. 15. Frequency maps at initial stretch of k = 1.4 with sliding boundaries. Nomenclature as in Fig. 13. (a) S1 material. (b) S2
material.
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For symmetric modes there is just one propagating wave below the first cut-off frequency (Figs. 13, 14a
and 15), given by the solution of (3.20) for N = 0,
k ¼
ffiffiffi
b
b

r
X ð3:22Þ
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That solution corresponds to non-dispersive dilatational waves for an infinite medium (not possible in
incompressible solids) and is shown in Figs. 13, 14b and 15 as a straight line. The other solution (k = X)
of (3.20) for N = 0 is not physically admissible for the boundary data under consideration. For the BK
material relation (3.22) reads k ¼ ðk4=3=

ffiffiffi
3

p
ÞX.

For antisymmetric modes (Figs. 13, 14b and 15) only evanescent waves are possible if X is below the first
cut-off frequency. However, as X increases the number of propagating modes increases as well (for both
symmetric and antisymmetric modes), in common with previous observations for free and clamped
boundaries.

The simple algebraic structure of Eqs. (3.20) permits the derivation of elegant relations for key points in
the frequency map. Just to give an example, coefficient X1, in the near cut-off frequency expansion (3.4),
takes here the form
X1 ¼ �ða� aÞb þ ðcþ aÞ2

2ða� aÞ
ffiffiffiffiffiffi
ab

p 1

N

� �
near X ¼ XCL ð3:23aÞ

X1 ¼ �ða � aÞbþ ðcþ aÞ2

2ða � aÞ
ffiffiffiffiffiffi
ab

p 1

N

� �
near X ¼ XCT ð3:23bÞ
where the cut-off frequencies are given in (B.3) with m, n = N. Relations (3.23) imply that X1 decreases with
N as can indeed be verified from Figs. 13–15 (X1 is correlative to the group velocity, Vg = 2X1k from (3.4)).
For real values of k we find from (3.20) the two asymptotes are
k ¼ X 1 � aðb� bÞ � ðcþ aÞ2

2ðb� bÞb
N
X

� �2
" #

ð3:24aÞ

k ¼
ffiffiffi
b
b

r
X 1 � aðb� bÞ � ðcþ aÞ2

2ðb� bÞb
N
X

� �2
" #

ð3:24bÞ
both valid for X2 � k2.

3.4. Inextensional boundaries

The eigenvalue equations obtained from the boundary data (2.26) are identical with those of sliding
boundaries (3.18) and (3.19), apart from the exchange of symmetric modes with antisymmetric modes.
Thus, eigenvalues k are obtained from (3.20) with even values of N describing antisymmetric modes and
odd values of N describing symmetric modes. The analogue of (3.22) is here obtained for the antisymmetric
mode (N = 0) and is given by
k ¼ X ð3:25Þ

with the other solution for N = 0 being physically inadmissible. The non-dispersive wave described by
(3.25) corresponds to a shear wave in an infinite medium.
3.5. Non-symmetric boundary conditions

Due to the symmetry of boundary conditions (2.9)–(2.12) we find that at the middle surface of the plate
(x = 0) the symmetric fields (2.14) comply with the sliding condition (2.11) identically. Similarly, the anti-
symmetric fields (2.15) comply with the inextensional condition (2.12) at the mid-plane x = 0. Therefore, re-
defining the width of a free-inextensional plate as h, the frequency maps in Figs. 2a–6a can be considered as
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a solution for the FR/SL plate where x in the solution (2.13) varies in the range 0 < x < h. Although the
wave number is the same as for the FR/FR plate, the depth of penetration is now related to a smaller plate
width h (rather than 2h). Consequently, the effective depth of penetration is twice as large as in the case of
the FR/FR plate.

Similarly, the wave numbers in Figs. 2b–6b can be taken as a solution for the FR/IN plate, those in Figs.
7a–12a for the CL/SL plate, and those of Figs. 7b–12b for the CL/IN plate, where the effective depth of
penetration is twice as large for the mixed boundary conditions.
4. Discussion

The frequency maps presented in the previous section reveal a considerable sensitivity of both propagat-
ing and evanescent waves to the frequency of the end disturbance and to the prestretch of the plate. How-
ever, the non-dimensionalized frequency X, defined in (2.19), is stretch dependent and it is therefore
instructive to examine the influence of prestretch separately by considering the direct term of physical fre-
quency. That separation is of importance for estimation of the proximity of any given frequency to cut-off
frequencies (e.g. Pichugin and Rogerson, 2001), especially due to the fact that in many cases waves are in-
duced by external generators having a fixed frequency spectrum.

To this end, we define the reference frequency (having dimensions of
ffiffiffiffi
N

p
=mm)
x� � 2

p
ffiffiffiffiffi
q0

p
h0x ð4:1Þ
where h0—the initial undeformed thickness—is related to the deformed thickness by
h
h0

¼ k� n
nþ1 ð4:2Þ
for the entire hyperelastic family (A.2). It follows that x* is related to X by
x� ¼
ffiffiffi
b

p
k

2nþ1
2ðnþ1ÞX ð4:3Þ
Thus, the reference cut-off frequencies (B.3) are given by
x�
cL ¼ m

ffiffiffi
a

p
k

2nþ1
2ðnþ1Þ; x�

cT ¼ n
ffiffiffi
a

p
k

2nþ1
2ðnþ1Þ; m; n ¼ 1; 2; 3; . . . ð4:4Þ
Fig. 16 shows the first cut-off reference frequencies (m,n = 1) at different levels of stretch k, for the three
materials. With the BK moduli (A.9) they take the simple form
x�
cL;1 ¼

ffiffiffiffiffiffiffi
3l0

p
k�2=3; x�

cT;1 ¼
ffiffiffiffiffi
l0

p
k�2=3 ð4:5Þ
By comparison with Fig. B.1, the physical cut-off frequencies display quite different dependence on the
initial stretch. Moreover, the constitutive properties can reverse the effect of prestretch from monotonously
decreasing (BK material in Fig. 16b) to increasing (S2 material) the frequency, or even make it non-mono-
tonous (S1 material). That suggests that for a consideration of the proximity to the cut-off frequency rela-
tions (4.4) should be consulted, rather than the non-dimensional counterparts given by (B.3).

The imaginary part of the wave number is a measure of penetration depth of the evanescent waves in the
axial direction of the plate. Some authors consider the smallest K to be a measure for validity of the dynam-
ical version of Saint-Venant�s principle, in analogy with the decay rate in the quasi-static case of plate prob-
lems (Torvik, 1967; Karp and Durban, 1997). Evanescent waves are also related to the phenomenon of
energy trapping either at the edge of a waveguide or, at any discontinuity within or along the generators
of the waveguide (e.g., Linton et al., 2002). Thus, denoting complex wave numbers by
k ¼ J þ iK with K > 0 ð4:6Þ
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we may argue, in the spirit of elastostatics, that the smallest value of the attenuation constant K provides a
bound on axial attenuation, of dynamic harmonic perturbation, inversely related to the depth of penetra-
tion of that mode. The relevance of that attenuation in the presence of propagating modes in a dynamic
problem is detailed in Karp and Durban (1997).

A general observation, based on the frequency maps and relation (3.4) is that at frequencies just below
any cut-off frequency, a small value of K is possible-implying a large distance of penetration of the evanes-
cent mode.

Fig. 17 displays the variation of the smallest attenuation constant Kmin with initial stretch for the BK
material at several reference frequencies. Similar results are shown in Fig. 18 (S1 with sliding boundaries).
These figures reveal a rich and complex picture, with considerable sensitivity of Kmin to initial stretch,
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frequency, and boundary data and are typical to other boundary conditions (as can be judged from
Figs. 2–15).

We do not discuss here the question of quasi-static bifurcation of the background finite deformation and
the properties of propagating modes, studied extensively by Roxburgh and Ogden (1994) and in recent
works by Rogerson et al. Nevertheless, a few comments related to propagating waves deserve notice.

Semi-infinite plates with free boundaries will buckle at a vanishingly small compressive load. With small
initial stretch, k = 1 + D where jDj 
 1, we have from (3.12) the approximation, again for the BK material
(m0 = 1/4),



Fig. 18. Variation of the smallest attenuation constant Kmin with initial stretch. S1 material with sliding boundaries. Nomenclature as
in Fig. 17. (a) Symmetric modes, (b) antisymmetric modes.
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k ¼
ffiffiffi
3

p

2
ffiffiffi
2

p Xffiffiffiffi
D

p ð4:7Þ
which, in fact, is valid also for negative values of D. At the stress free configuration relation (4.7) is
replaced by
k2 ¼ � 3ffiffiffi
2

p
p

X ð4:8Þ
Fig. 19a shows the details of frequency maps (BK, free boundaries, antisymmetric modes) at, and near, the
stress free configuration, both in compression (k = 0.8) and tension (k = 1.1). The validity of (4.7) and (4.8)



Fig. 19. Frequency maps for the BK material with free boundaries in the vicinity of bifurcation states. (a) Antisymmetric modes near
the stress free state. (b) Symmetric modes near necking.
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near the origin is clearly seen. These results are also confirmed for the static case (X = 0) by comparison
with the asymptotic result derived by Durban and Karp (1992)
k ¼ 2
ffiffiffi
3

p

p
i
ffiffiffiffi
D

p
for X ¼ 0 ð4:9Þ
All three relations (4.7)–(4.9) indicate low decay rates (large depth of penetration of edge disturbances) near
the stress free configuration. A recent study on decay of end effects in elastostatics, with initial compression,
has been given by Karp (in press).
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Finally, in Fig. 19b we examine the symmetric modes at stretches slightly below (k = 2.2), and slightly
above (k = 2.36), the necking stretch (k = ku � 2.28) of the BK material with free boundaries. Relation
(3.7), along with its static analogue (Durban and Karp, 1992)
k ¼ 6
ffiffiffi
3

p

p
i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � k

ku

s
for X ¼ 0 ð4:10Þ
are in complete agreement with numerical calculations. It is interesting to note that for both post-bifurcated
states in Fig. 19a and b (k = 0.8 and 2.36) the propagating mode originates at the X = 0 line and is char-
acterized by vanishing phase velocity and an infinite group velocity.

The traction rate resultants produced by the eigenmodes, at the disturbed end z = 0, are generally not
self-equilibrated. Of course, for symmetric modes no resultant shear traction rate (Fx) or resultant moment
rate (M) will develop at the loaded end. However, the axial traction rate becomes
F z ¼
2hi
p bksT xzt� bcX2sUt

bk2 � bX2
e�ixt ð4:11Þ
where Txz denotes the transverse profile of the shear traction rate defined in (2.8) as ðsrxz � rcxzÞ, and sÆb
stands for through thickness jumps, for example
sUt � UðhÞ � Uð�hÞ ð4:12Þ

Relation (4.11) follows directly from the equations of motion, and from the constitutive relations, and is

not restricted to symmetric modes. For free boundaries, where Txz vanishes at x = ±h, Fz remains active
unless X = 0 (quasi-static response). Exceptionally, for sliding boundaries, where both Txz and U vanish
at x = ±h, Fz vanishes as well and each eigenmodes is fully self-equilibrating.

The analogous expressions for the resultant shear traction rate and for the resultant moment rate are
readily found as
F x ¼
2hi
p ksT xxt� aX2sW t

k2 � X2
e�ixt ð4:13Þ

M ¼ �
2hi
p bkðF x � sxT xztÞ þ 2hi

p ðc� rÞ kF x � 2hi
p sT xxt

� �
þ bcX2sxUt

bk2 � bX2
e�ixt ð4:14Þ
where Txx denotes the transverse profile of the normal traction rate defined in (2.8) as r
r
x.

Both Fz and M will vanish for any symmetric wave and in the static case for antisymmetric modes when
the boundaries are free. For inextensional waves, Fz will vanish at any frequency, but otherwise, self-equi-
librium of the eigenmodes is not maintained. In fact, for free and clamped boundaries it is possible to relate
the traction rate resultants, (4.11) and (4.13), to averaged end velocities Uav and Wav by the elegant
formulae
F x ¼ ip
b
k

X2U av; F z ¼ ip
b
k

X2W av ð4:15Þ
for free boundaries, and
F x ¼ ipkbU av; F z ¼ ipkbW av ð4:16Þ
for clamped boundaries. These relations can be used to examine the influence of X on the instantaneous
impedance.

While most of existing studies concentrate on the phase velocity of the propagating waves we draw atten-
tion to the group velocity which is related to energy propagation. Such disposition exposes interesting
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implications of the frequency analysis. For example, according to (3.4) the group velocity of waves at fre-
quencies just above a cut-off frequency is very small, thus having negligible contribution to energy propa-
gation albeit a very large phase velocity. Another example is the flexural mode in a plate with free faces.
According to (3.10), the group velocity of that mode in a stress free state is very small at low frequencies.
Application of even incremental prestress to the plate dictates wave propagation according to (3.9) which
induces finite group velocity even at a very low frequency. Considering the plate�s own weight as generating
small prestress raises the question of the possibility to experimentally observe the behaviour predicted by
linear elasticity (3.10) in working structures (though observed in a careful experiments carried by Zemanek,
1972). That observation is consistent with the known result for a vibrating string which will not vibrate
unless initial tension T is applied, resulting in the phase velocity C ¼

ffiffiffiffiffiffiffiffiffi
T=q

p
(see also discussion by Kaplu-

nov et al., 2000).
5. Concluding comments

We have presented a detailed spectral analysis of dynamic eigenfields generated, within a prestrained
plate, by time harmonic end excitation. Exact equations of non-linear continuum elasticity have been used,
in a rate version, to obtain closed-form separation of variables solutions. Frequency maps are provided
over a range of excitation frequency and prestrain, with several sets of boundary conditions, and for three
different hyperelastic materials, and compared to the corresponding frequency maps obtained for a stress
free plate (representing the solution of linear elasticity).

Depth of penetration of evanescent modes, related to trapped energy, is discussed. In particular, a large
depth of penetration in the proximity to the cut-off frequencies is observed along with cut-off frequency sen-
sitivity to the prestretch. It has been noted that caution should be practised while considering proximity to
cut-off frequencies in terms of non-dimensional frequencies. High sensitivity of the maximal possible depth
of penetration to initial stretch, with abrupt changes due to crossings of cut-off frequencies, is exposed. Two
typical cases are shown graphically.

The four ideal symmetric cases of boundary conditions have been discussed along with a few non-
symmetric combinations of boundary data. It is expected that such cases might be relevant to waveguides
with partial or non-symmetric coating (like electroplating, e.g. Johnson et al., 1996). The eigenfield
investigated here are of particular interest in the analysis of dynamic response of finite plates, with var-
ious boundary conditions, as they enable a spectral expansion in the eigenmodes. The similarity of the
frequency maps for plates with both faces free of traction to plates with both faces clamped are
noticed. Plates with inextensional and sliding faces possess identical frequency maps, except for ex-
change of symmetric with antisymmetric modes and the existence of only one fundamental mode in each
case.

The traction rate resultants, related to acoustic impedance, are derived, and expressed in terms of bound-
ary data over the long faces. In general, self-equilibrium of the waves is not maintained. While self-equilib-
rium is an important notion in static analysis of Saint-Venant�s principle, that finding in dynamics does not
necessarily excludes the possibility of existence of a dynamic version of Saint-Venant�s principle (e.g., Karp
and Durban, 1997).
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Appendix A. Instantaneous moduli for hyperelastic solids

Hyperelastic isotropic solids admit a strain energy function of the form W(kx,ky,kz) with the plane strain
moduli (Hill, 1978)
a � kx
kz

o2W

ok2
x

; b � kz
kx

o2W

ok2
z

; c � o2W
okxokz

; 2l � k2
x þ k2

z

k2
x � k2

z

ðrx � rzÞ ðA:1Þ
In this study we consider the hyperelastic family (Hill, 1978)
W ¼
X
j

Cj
mj

kmj1 þ kmj2 þ kmj3 � 3 þ 1

n
ðJ�nmj � 1Þ

� �
ðA:2Þ
where the principal stretches (k1,k2,k3) are identified as k1 = kz = k, k2 = ky = 1, k3 = kx = k�n/(n + 1) and
J = k1k2k3 is the volume ratio. The summation is carried over pairs (Cj,mj) which, like n, are experimentally
determined material parameters.

The instantaneous moduli (A.1) follow in the form (Durban and Karp, 1992)
a ¼ ðnþ 1Þ
X
j

Cjmjk
�
nmjþ1

nþ1 ðA:3aÞ

b ¼
X
j

Cj ðmj � 1Þk
ðnþ1Þmj�1

nþ1 þ ðnmj þ 1Þk�
nmjþ1

nþ1

� �
ðA:3bÞ

c ¼ n
X
j

Cjmjk
�
nmjþ1

nþ1 ðA:3cÞ

2l ¼ k
2ð2nþ1Þ
nþ1 þ 1

k
2ð2nþ1Þ
nþ1 � 1

r ðA:3dÞ
where r � rz is given by the (plane-strain) stress–stretch relation
r ¼ k� 1
nþ1

X
j

Cj kmj � k�
nmj
nþ1

� �
ðA:4Þ
The three specific models used in the numerical evaluation of the eigenvalues are the Blatz–Ko foam rubber
(Blatz and Ko, 1962) with the single term representation
ðBKÞ m1 ¼ �2; C1 ¼ �22; n ¼ 0:5 ðm0 ¼ 0:25Þ ðA:5Þ

and two vulcanized foam rubbers due to Storåkers (1986): a highly compressible natural rubber (S1) with
ðS1Þ m1 ¼ �m2 ¼ 4:5; C1 ¼ 1:85; C2 ¼ �9:2; n ¼ 0:92 ðm0 ¼ 0:324Þ ðA:6Þ

and a nearly incompressible synthetic rubber (S2) with
ðS2Þ m1 ¼ �m2 ¼ 3:6; C1 ¼ 2:04; C2 ¼ �0:51; n ¼ 25 ðm0 ¼ 0:49Þ ðA:7Þ

Here the dimensions of parameters Cj in that data are 10�2 Nmm�2.

In the absence of prestrain (k = 1) we recover from (A.3a–d) the usual elastic moduli, of the stress free
configuration,
2l0 ¼
X
i

miCi; m0 ¼
n

2nþ 1
; a ¼ b ¼ 2ðnþ 1Þl0; c ¼ 2nl0; a ¼ b ¼ l0 ðA:8Þ
where l0 is the shear modulus and m0 is the Poisson ratio.
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For the Blatz–Ko material (A.5) the instantaneous moduli (A.3) admit the simple form
Fig. A
longitu
a ¼ 3l0; b ¼ 3l0R; c ¼ l0; a ¼ l0R; b ¼ l0 ðA:9Þ

where
R � k�8=3 ðA:10Þ

Likewise, the instantaneous shear modulus and the stress-strain relation (under plane-strain constraint) are
given by
2l ¼ l0ð1 þ RÞ; r ¼ l0ð1 � RÞ ðA:11Þ
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Fig. 1 shows the force (F = kxr) required to produce the (plane-strain) stretch k for each of the three solids
(A.5)–(A.7). It is seen that the BK material has a necking instability at the stretch ku � 2.28 where F attains
its highest value (Durban and Karp, 1992).

The reference phase velocities (2.7) vary with initial stretch, and can be conveniently rewritten as
ffiffiffiffiffi
q0

p
CTx ¼

ffiffiffiffiffiffi
Ja

p
;

ffiffiffiffiffi
q0

p
CTz ¼

ffiffiffiffiffiffi
Jb

p
;

ffiffiffiffiffi
q0

p
CLx ¼

ffiffiffiffiffi
Ja

p
;

ffiffiffiffiffi
q0

p
CLz ¼

ffiffiffiffiffi
Jb

p
ðA:12Þ
where q0 is the background density of the undeformed state, and
J ¼ q0

q
¼ k

1
nþ1 ðA:13Þ
Relations (A.12) are displayed in Fig. A.1 for the three materials considered here. Initially, with k = 1, there
are just two different velocities, since a = b = l0 and a = b = 2(n + 1)l0 imply that CTx = CTz and
CLx = CLz. As the deformation progresses, however, all four velocities are, in general, activated with con-
siderable sensitivity to the stretch k.

For the BK solid (A.9) and (A.10) we find that the phase velocities can be easily related to the axial
stretch by
ffiffiffiffiffi

q0

p
CTx ¼

ffiffiffiffiffi
l0

p
k�1;

ffiffiffiffiffi
q0

p
CTz ¼

ffiffiffiffiffi
l0

p
k1=3;

ffiffiffiffiffi
q0

p
CLx ¼

ffiffiffiffiffiffiffi
3l0

p
k1=3;

ffiffiffiffiffi
q0

p
CLz ¼

ffiffiffiffiffiffiffi
3l0

p
k�1 ðA:14Þ
Appendix B. Cut-off frequencies

Cut-off frequencies are obtained at the limit of vanishing wave numbers, k! 0, rendering the incremen-
tal displacements (2.13) independent of the axial coordinate. The time harmonic solutions of the equations
of motion (2.4) and (2.5) are then given by the reduced version of (2.13), for k = 0, with
Us ¼ A sin

ffiffiffi
q
a

r
xx

� �
; W s ¼ B cos

ffiffiffi
q
a

r
xx

� �
ðB:1Þ

Ua ¼ C cos

ffiffiffi
q
a

r
xx

� �
; W a ¼ D sin

ffiffiffi
q
a

r
xx

� �
ðB:2Þ
Compliance with the boundary data (2.23)–(2.26) generates, in all cases, two groups of cut-off frequencies
given by multiples of the reference velocities CLx and CTx of 2.7. Thus, with the non-dimensionalization of
(2.19) the cut-off frequencies are
XCL ¼ m
CLx

CTz
¼ m

ffiffiffi
a
b

r
; XCT ¼ n

CTx

CTz
¼ n

ffiffiffi
a
b

r
; m; n ¼ 1; 2; 3; . . . ðB:3Þ
with integers (m,n) labeling longitudinal and transverse waves, respectively. Fig. B.1 displays the depend-
ence of the first (m = 1, n = 1) cut-off frequencies on initial stretch for the three hyperelastic solids consid-
ered here.

For the BK material we have, with the aid of (A.9) and (A.10),
XCL ¼
ffiffiffi
3

p
m; XCT ¼ k�4=3n; m; n ¼ 1; 2; 3; . . . ðB:4Þ
At the stress free configuration we recover from (B.3) the known relations, using (A.8),
XCL ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � m0Þ
1 � 2m0

s
; XCT ¼ n: ðB:5Þ
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Here, the n letter under the square root sign in the expression for XCL is the material property as used in
(A.2) and indicating, as expected, that for nearly incompressible material the thickness-stretch cut-off fre-
quency approaches infinity.
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